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ncertainty in the duration of surgical procedures can cause long patient wait times, poor utilization of resources, and

high overtime costs. We compare several heuristics for scheduling an Outpatient Procedure Center. First, a discrete
event simulation model is used to evaluate how 12 different sequencing and patient appointment time-setting heuristics
perform with respect to the competing criteria of expected patient waiting time and expected surgical suite overtime for a
single day compared with current practice. Second, a bi-criteria genetic algorithm (GA) is used to determine if better solutions
can be obtained for this single day scheduling problem. Third, we investigate the efficacy of the bi-criteria GA when surgeries
are allowed to be moved to other days. We present numerical experiments based on real data from a large health care
provider. Our analysis provides insight into the best scheduling heuristics, and the trade-off between patient and health care
provider-based criteria. Finally, we summarize several important managerial insights based on our findings.

Key words: operating room; outpatient procedure; scheduling; simulation; genetic algorithm
History: Received: December 2008; Accepted: August 2010, after 2 revisions.

. rooms, as well as equipment resources such as diag-
1. Introduction nostic devices and surgical instrument kits. There are
Surgical services require the coordination of many  also several human resources including surgeons,
activities including patient intake and preparation, the = nurses, and nurse anesthetists. Surgical services occur
surgical procedure, and patient recovery. Designing  in three major steps. The first, infake, starts when the

schedules that achieve smooth patient flow is a com-  patient arrives at the surgical suite to initiate his/her
plicated task due to the dependencies between these  check-in process, and ends when the patient reaches
activities. Scheduling is further complicated by con-  an OR bed. The intra-operative care period starts when
siderable uncertainty in the duration of activities.  the patient is admitted to the OR area and ends when
These problems are amplified for Outpatient Proce-  the patient is taken to a recovery bed. The surgical

dure Centers (OPCs) that typically perform a variety = procedure itself is performed during this period. The
of elective procedures on an outpatient basis. A  last step, recovery, starts when the patient is admitted
high volume of surgical procedures combined with  to a recovery area and ends when the patient is dis-
significant uncertainty in the duration of activities  charged. Even for very routine surgeries, the duration
and a fixed length of time that the surgical suite is  of each of these activities exhibits considerable vari-
open (typically 8-10 hours) give rise to difficult  ation (Berg et al. 2010).
stochastic scheduling problems involving multiple, In this article, we focus on expected patient waiting
competing criteria. time and expected surgical suite overtime. These are
The physical resources in a surgical suite include = among the most important performance measures
operating rooms (ORs), intake rooms, and recovery  that a manager (e.g., charge nurse) must consider on a
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daily basis. These criteria are in conflict because a
schedule with small time intervals between proce-
dures tends to have low surgical suite overtime and
high patient waiting times, and vice versa. We per-
form a bi-criteria analysis to estimate the impact of
three types of scheduling improvements and answer
the following three questions:

1. What are the potential benefits of using easy-to-
implement heuristics for daily appointment
scheduling?

2. What are the potential benefits of optimization
methods over commonly used and -easy-to-
implement heuristics for daily appointment
scheduling?

3. What are the potential benefits of controlling
daily procedure mix from day to day?

An OPC at Mayo Clinic, in Rochester, Minnesota,
forms the testbed for our study. We first construct a
discrete event simulation (DES) model and use it to
evaluate easy-to-implement scheduling heuristics
based on expected patient waiting time and expected
surgical suite overtime. Our DES is a comprehensive
model that includes all three major surgical service
steps. Next, we embed the simulation model within a
hybrid solution method that contains both a bi-criteria
genetic algorithm (GA) and appointment time-setting
heuristics to construct a (near) Pareto optimal set of
schedules (i.e., the non-dominated set of solutions
with respect to the two criteria). We further use the
GA to examine the potential benefits of controlling the
daily surgical mix.

The remainder of the paper is organized as follows.
In the next section, we provide some background on
OPCs. In section 3, we present a brief literature review
of relevant studies. In section 4, we describe our sim-
ulation model. In section 5, we discuss the
methodologies we have applied including the sched-
uling heuristics and our GA. In section 6, we present
experimental results. Finally, we summarize the most
significant managerial insights in section 7.

2. Background on OPCs

OPCs are complex systems, often with several surgi-
cal groups (e.g., departments or subgroups within
departments) sharing resources on a given day. The
layout of a typical suite is illustrated in Figure 1. The
physical space used for patient care can be broken into
three sections. The first is the patient waiting area, the
second is the pre-/post-room area (used for patient
intake and recovery), and the third is the OR area.
Typically there is some dedication of intake, oper-
ating and recovery rooms to surgical groups. For
example, in the OPC we studied, ORs are dedicated as
follows: Pain Medicine has one OR, each of Urology and
Ophthalmology has two ORs, and Oral Maxillofacial

(OMS) has three ORs. Thus there are eight ORs in
total, which are shared by the three surgical groups.
There are 20 pre-/post-rooms, four of which are ded-
icated to Pain Medicine. Oral Maxillofacial also has
four dedicated pre-/post-rooms, but the remaining 12
pre-/post-rooms can be utilized by any one of the
surgical cases of the other groups.

The OPC depicted in Figure 1 combines resources
by using the same set of rooms for intake and recov-
ery. This increasingly common layout is motivated by
the desire to balance resources and reduce congestion
(because intake areas tend to be heavily utilized early
in the day while recovery areas are empty and vice
versa at the end of the day). Patients first go to the
check-in desk, and then to the patient waiting area,
where they wait for an intake room to become avail-
able. After the intake process, they wait for their
surgeon and OR to become available. Once the pro-
cedure is complete, they reenter the pre-/post-room
area to recover, and exit the OPC when their recovery
is complete.

There is significant uncertainty in the time neces-
sary for completing activities in the OPC. In Figure 2,
empirical estimates of probability density functions
are plotted for intake, surgical procedure, and recov-
ery, for procedures from the same surgical group.
Surgical procedure durations can differ considerably
among procedures even within the same surgical
group and they tend to have a long tail, which rep-
resents unpredictable low probability complications
that may occur during the procedure. Intake and re-
covery distributions are generally quite similar within
a surgical group. Intake distributions are similar, be-
cause patients are going through similar intake
processes. Recovery distributions also do not differ,
as procedures within a surgical group tend to use
similar levels of anesthetic.

The particular OPC we consider opens at 8 am,
which is the scheduled time of the first patient’s ar-
rival. The planned closure time is 5 pMm. Overtime
results in additional costs for those staff that stay be-
yond 5 pm. There is also a loss of goodwill on the part
of staff because most staff members prefer not to work
overtime. Furthermore, we have anecdotal evidence
that long patient wait times, which lead to unhappy
patients, reduce staff morale and can lead to turnover,
particularly among nurses.

We use the process flow defined above, and the
probability density functions for intake, surgical proce-
dure, recovery, and other activity times, to construct our
DES model, which we describe in detail in section 4.

3. Literature Review

Following is a brief literature review that covers sev-
eral examples from the literature that are related to
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Figure1

Layout and Patient Flow Through an Outpatient Procedure Center Including the Patient Waiting Area, Pre-/Post-Rooms, and Operating Rooms
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Figure2 Probability Density Functions for Intake, Procedure, and Recovery
Times for Two Different Types of Surgical Procedures within a
Surgical Group
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our work. We focus on studies that either (a) evaluate
scheduling heuristics for multiple ORs using a DES
model or (b) consider resources in addition to ORs
(e.g., recovery area resources) or (c) analyze multi-
criteria problems related to planning and scheduling.
For a more extensive review of the literature on
surgery planning and scheduling, the reader is re-
ferred to Magerlein and Martin (1978), Blake and
Carter (1997), Gupta (2007), Gupta and Denton (2008),
Cardoen et al. (2010), and May et al. (2011).

Dexter et al. (1999b) use simulation to test heuristics
for allocating block time to surgeons, and schedule
elective cases to maximize OR utilization. They eval-
uate four on-line bin packing algorithms to schedule
elective cases: next fit, first fit, best fit, and worst fit.
Dexter et al. (1999a) evaluate 10 different algorithms
(on-line, off-line, and hybrid algorithms) for scheduling
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add-on cases into the open OR time available to eval-
uate their effectiveness in increasing OR suite uti-
lization. Testi et al. (2007) use simulation to evaluate
different surgery sequences with regard to the longest
waiting time of the surgeries in the waiting list, long-
est processing time (LPT), and shortest processing
time (SPT) after building the master surgery schedule.

Dexter and Marcon (2006) studied the impact of
several different surgery sequencing heuristics on
workload of a post-anesthesia care unit (PACU) in-
cluding: random sequence, longest cases first (LCF),
shortest cases first, Johnson’s rule, and several others.
The authors analyzed how sequencing affects OR
over-utilization, PACU completion time, delays in
discharging from the OR into PACU, and the maxi-
mum number of patients in the PACU throughout the
day. They found that even though LCF is the most
popular rule used in practice, it is one of the worst
rules with regard to the performance measures of the
study. Random sequencing is suggested if it is difficult
to implement rules that performed better, due to the
constraints (such as medical and equipment) that are
not considered in the study, because implementation
of random sequencing is trivial and it yields medium
level results.

Berg et al. (2010) use a DES model to analyze an
endoscopy suite with respect to surgeon-to-OR allo-
cation scenarios. Competing performance measures
such as overtime for the endoscopy suite and patient
waiting time were analyzed in the model and a sim-
ulated annealing heuristic was used to improve the
scheduled start time of cases with respect to expected
overtime and patient waiting time. An endoscopy
suite is a simplification of a general OPC because the
case mix is limited to only upper and lower endo-
scopies. The suite considered in Berg et al. (2010)
consists of three independent process areas (i.e., in-
take, procedure, recovery) and the authors assume
that the capacities of intake and recovery areas are
unlimited. In contrast we assume intake and recovery
have fixed capacity and potentially limit patient flow
through the suite. Finally, the authors use only a very
simple simulated annealing approach to design
schedules, whereas we provide a detailed compari-
son of standard heuristics as well as a more advanced
bi-criteria GA. Lehtonen et al. (2007) built a simulation
model to analyze the effect of six process interven-
tions on open-heart surgery with respect to OR
productivity and overtime amount.

Price et al. (2011) studied the problem of allocation
of the surgical block times to days and surgical
groups. The objective of their mixed integer program-
ming (MIP) model is to balance the flow into the
intensive care unit (ICU) with the flow out of the ICU.
They provide evidence that their model achieves the
goal of reducing overnight stays in the PACU, which

occur due to congestion in the ICU. Chow et al. (2011)
used a combination of Monte Carlo simulation and
MIP models to build surgery schedules that reduce
variation in bed occupancy in surgical wards. In their
models, (1) block times for surgeries are scheduled
into future, and (2) surgical mix within each block is
determined. Marcon et al. (2003) simulate a surgical
suite to estimate the number of PACU beds required.
They also investigated the effect of a decrease in the
number of porters (patient escorts) in the OR on the
number of PACU beds needed. Lowery and Davis
(1999) used a simulation tool to study the effect of
decreasing the number of ORs in a hospital. They an-
alyzed the effects of changes in the surgery schedule
and in case times on the number of rooms required.
Tyler et al. (2003) simulate an OR to determine the
optimum OR utilization and analyze the important
factors such as average patient waiting time and vari-
ability of case durations that impact OR utilization.
Lowery (1992) uses a simulation model to simulate
the patient flow through critical care units to deter-
mine the number of beds required.

Multi-criteria studies related to surgery planning
and scheduling include the following. Jebali et al.
(2006) developed a two-phase approach to solve the
surgery assignment and sequencing problem formu-
lated as an integer program. In their approach,
operations are first assigned to ORs with the objec-
tive of minimizing hospitalization, undertime and
overtime costs. Second, optimal sequences are sought
for minimizing the total overtime cost for ORs. Guinet
and Chaabane (2003) solved the weekly patient-to-OR
assignment problem using a primal-dual heuristic.
Patient satisfaction and resource efficiency are con-
sidered in this study where the objective includes the
minimization of the number of days patients wait in
the hospital and the overtime. Lamiri et al. (2008)
proposed a stochastic programming model for the as-
signment of elective surgeries to ORs over a planning
horizon. Uncertainty comes from the demand for
emergent cases in this formulation. The study aims to
minimize both OR utilization costs and patient-related
costs. They solve the problem using a column gener-
ation method.

In the context of ambulatory care services, Cayirli
et al. (2006) tested several sequencing and appointment
rules for clinic visits using simulation with regards to
patient waiting time, doctor idle time, and overtime.
The most significant finding of this study is that the
impact of sequencing on the criteria is more important
than that of the appointment rule. Lovejoy and Li
(2002) consider an OR capacity expansion problem.
They focus on the trade-off between waiting time, pro-
cedure start time reliability, and hospital revenues.

Our work differs from the aforementioned papers
in the following ways. First, we propose a hybrid
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solution technique mixing a bi-criteria GA with ap-
pointment time-setting heuristics to find the (near)
Pareto optimal set of schedules and reveal the trade-
off between factors affecting both the patient and the
provider. Second, we test several commonly used
scheduling heuristics against our GA to estimate the
potential benefits of optimization-based methods for
scheduling system improvements. Finally, we use our
GA to estimate the potential benefits of optimizing
daily procedure mix.

4. Simulation Model

Our DES model was developed based on an OPC in
Rochester, MN (Huschka et al. 2007). It is a terminating
simulation (Banks et al. 2005), in the sense that a finite
number of procedures are scheduled each day within
a pre-determined time in which the OPC is open each
day. Patients arrive into the check-in area according to
a deterministic schedule (constructed using one of the
heuristics we discuss in section 5). We assume arrivals
are on time and all patients show up for their scheduled
procedure (extensions such as tardiness and no-shows
are straightforward with our model; however, they are
uncommon in the OPC we studied, and for simplicity
we do not include them in our analysis). Subject to
pre-/post-room and surgeon/OR availability, patients
proceed through the OPC with activity start and com-
pletion times based on samples from the continuous
probability density functions of Tables 1 and 2.

The number of surgeons per surgical group on a
given day is equal to the number of ORs allocated to
the group and surgeons may operate in any OR as-
signed to their group. While these policies are not
necessarily in place in all OPCs, they are reasonably
common, and representative of scheduling problems
faced in practice.

We used data from the year 2006 for 4034 patients at
Mayo Clinic (corresponding to the operations of the
first 21 weeks of the year). Probability density func-
tions were fit for all stages of a patient’s movement
through the surgical suite including intake, surgical
procedure, and recovery (see Table 1 for a summary of
data). We partitioned the procedure times into three
parts (pre-incision, incision, and post-incision times) and
fit distributions for each independently. This was nec-
essary because these activities require different
resources. For instance, the OR is utilized the entire
time, but surgeons do not need to take part in the pre-
incision and post-incision activities.

Distributions were fit separately for each surgical
procedure type. We used the log-normal distribution
for procedure times because it yielded a best fit based
on maximum likelihood estimation and because it is
commonly used in the literature (see, for example,
Zhou and Dexter 1998). For intake and recovery we

found Erlang, gamma, beta, Weibull, and exponential
distributions were the most common best fit. OR
turnover and transfer times were estimated by trian-
gular distributions based on expert estimates of the
minimum, mean, and maximum times (see Table 2).

Our validation is based on a comparison of model
outputs such as the number of surgeries completed
per day and expected daily overtime estimates with
similar values from the particular outpatient proce-
dure practice at Mayo Clinic in Rochester, MN (i.e.,
the baseline schedule). The results based on the model
were also presented to experts at Mayo Clinic familiar
with the system including an operations research an-
alyst specializing in surgery in the Division of Health
Care Policy and Research, an administrator for the
surgical practice, and the group of nurses that work
within the unit.

5. Methodology

We use our DES model to compare easy-to-implement
heuristics used in practice with a GA-based heuristic
on the basis of total expected patient waiting time and
expected surgical suite overtime. Overtime is the
difference between the time the last patient completes
recovery and 5 PM (if it is non-negative). Total patient
waiting time is the sum of the times a patient spends
waiting for a pre-/post-room to initiate intake and
waiting for an OR to begin the surgical procedure. As
an aggregate measure, we calculate the average of the
expected patient waiting times over all patients
served across all days.

In section 5.1 we describe several combinations of
sequencing and appointment time heuristics for se-
lecting the schedule of patient arrivals to the check-in
area of the OPC. In section 5.2 we discuss our GA-
based approach.

5.1. Heuristics
To answer question 1 of section 1, we test several
combinations of patient sequencing and appointment
time heuristics. We sequence cases of each OR and
day combination according to four different sequenc-
ing rules: increasing mean of procedure time (SPT),
decreasing mean of procedure time (LPT), increasing
variance of procedure time (VAR), and increasing
coefficient of variation of procedure time (COV).
Given a specified sequence of patients, the first ap-
pointment is set to the beginning of the day, and
subsequent appointments are set to the prior appoint-
ment time plus the estimated time for the previous
patients’ procedure. The estimate of the procedure
time influences the patient waiting time and overtime.
If the estimate is too large, it may lead to unnecessary
overtime; if it is too low it may result in unnecessary
patient waiting time. To explore this trade-off, we
estimate the time using various percentiles of the
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Table1 Mean, Standard Deviations (in Minutes), and Distributions of the Intake, Procedure, and Recovery Times for Various Procedure Groups of the Surgical
Groups Are Listed with the Number of Patients Data Used to Calculate Them

Surgical group Procedure group Process Mean Standard deviation Number of operations Distribution fit
Oral Maxillofacial procedure 1 Intake 42.02 21.92 1472 Weibull
Procedure 33 19.11 1472 Lognormal
Recovery 53.02 33.88 1472 Gamma
2 Intake 0 0 0 —
Procedure 36 33.88 1919 Lognormal
Recovery 0 0 0 —
Pain Medicine 1 Intake 38.4 20.22 58 Erlang
Procedure 19.78 12.12 58 Lognormal
Recovery 21.09 9.74 58 Weibull
2 Intake 38.72 24.37 244 Gamma
Procedure 20.49 10.86 244 Lognormal
Recovery 23.64 16.65 244 Erlang
3 Intake 347 21.11 1551 Gamma
Procedure 20.93 15.08 1551 Lognormal
Recovery 19.94 14.17 1551 Erlang
4 Intake 32.79 16.79 24 Triangular
Procedure 40.5 26.12 24 Lognormal
Recovery 52.58 29.93 24 Weibull
5 Intake 36.46 21.47 970 Gamma
Procedure 34.01 17.42 970 Lognormal
Recovery 23.26 15.84 970 Beta
Ophthalmology 1 Intake 65.58 26.32 1696 Gamma
Procedure 41.63 16.43 1696 Lognormal
Recovery 29.84 14.56 1696 Weibull
2 Intake 65.65 28.57 589 Triangular
Procedure 77.66 44.03 589 Lognormal
Recovery 42.75 26.9 589 Erlang
Urology 1 Intake 64.92 27.59 329 Weibull
Procedure 53.3 217 329 Lognormal
Recovery 89.33 39.18 329 Gamma
2 Intake 58.14 26.56 640 Gamma
Procedure 313 16.37 640 Lognormal
Recovery 94.23 36 640 Erlang
3 Intake 64.15 22.78 153 Beta
Procedure 138.16 56.77 153 Lognormal
Recovery 126.95 49.55 153 Weibull
4 Intake 61.37 25.18 345 Erlang
Procedure 55.78 22.89 345 Lognormal
Recovery 99.91 33.13 345 Beta
5 Intake 58.18 26.68 496 Gamma
Procedure 80.33 43.76 496 Lognormal
Recovery 96.56 44,97 496 Weibull

The procedures within a surgical group (e.g., Urology) were grouped manually based off the procedure codes by the Outpatient Procedure Center staff.

distribution. Appointment times are determined by

the following recursion:

Aipn =Ai+hi, i=2,...,n,

where A; =0, and #; is the percentile of procedure i
duration. This is known in the literature as job hedging
(Yellig and Mackulak 1997) and it has been investi-
gated extensively in the context of OR and single
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Table2 Distributions and their Parameters Set Subjectively by the Experts
for the Transfer Times Between Units as Well as the Turnover
Times for Different Rooms Are Listed

Transfer times

Patient flow (from—to) Distribution (minimum, mean, maximum)

Triangular (5, 6, 7)
Triangular (2, 3, 4)
Constant (2)
Triangular (1, 2, 2)

Check-in desk—waiting area
Waiting area—pre-/post-room
Pre-/post-room—OR
OR—pre-/post-room

Turnover times

Room type Distribution
Pain Medicine OR Triangular (2, 3, 8)
Other ORs Triangular (5, 6.5, 8)

Pre-/post-rooms Triangular (5, 6.5, 8)

All parameter values are in minutes.
OR, operating room.

server appointment scheduling (for example, see
Charnetski 1984; Ho and Lau 1992; Weiss 1990).

5.2. A Bi-Criteria GA

To answer questions 2 and 3 from section 1 we solve
two different models using a GA. The first (model A)
assumes the daily procedure mix each day is fixed
based on a pre-defined schedule. The second (model
B) assumes the daily procedure mix may be modified
by rescheduling procedures among days within a
time window of n days (n =1 and n>1 for models A
and B, respectively). The remainder of this section
provides a brief summary of our GA (more complete
details are presented in Appendix A).

A GA is a local search algorithm based on the bi-
ological evolution paradigm (Holland 1975). An initial
population is created and genetic operators are used
to search the neighborhood of the initial population
through successive improving iterations. At each it-
eration, a selection is made based on the survival of the
fittest rule to determine the members of the next gen-
eration. This mechanism continues until a stopping
criterion is met (e.g., after a fixed number of iterations,
or if the solution is not sufficiently improved after a
certain number of iterations).

Members of the population are called chromosomes
and each chromosome represents a solution (in our
context a solution is a surgery schedule). The chro-
mosome stores the job hedging level, day, and known
attributes of a procedure, i.e., type and the surgeon for
each procedure.

The algorithm starts with an initial set of solutions
(note that we use the term solution and chromosome
interchangeably), which are generated as follows. One
of the solutions in the initial population is the actual
schedule used at the OPC in the year 2006. The rest of

the solutions are created using a combination of the
following techniques: (i) scheduling based on the
heuristics described in section 5.1 and (ii) randomly
assigning procedures to time slots available within the
n days of time window at the actual schedule.

At each iteration, we evaluate solutions using the
DES model and store the expected patient waiting
time and expected surgical suite overtime. We rank
solutions based on these two criteria. Our approach is
based on the non-dominated sorting genetic algo-
rithm II proposed by Deb et al. (2000) and is
illustrated in Figure 3. The non-dominated solutions,
i.e., the (near) Pareto optimal set, are assigned to the
first front. We then compare the remaining solutions
and assign the non-dominated ones with the second
front. Using this approach, we determine the fronts of
all the solutions in the population and solutions are
ranked based on their associated front. Solutions on
the same front are further prioritized using a crowding
distance operator (described in Appendix A) to diver-
sify the solution set along a given front.

To create the next generation, pairs of solutions are
selected based on the ranking and combined via a
crossover operator to create new pairs of solutions.
We also apply a mutation operator to create near
neighbors of current solutions. Repeating the same
steps a fixed number of times, a new solution set is
constructed at each iteration of the GA. After a de-
fined number of iterations are completed, the
algorithm terminates and the solutions on the (near)
Pareto optimal set (first front) are stored as the output.

6. OPC Case Study

Preliminary experiments were performed in which
the number of simulation replications was varied to

Figure3 Front 1 is the Set of Points Including (Near) Pareto Optimal Set of
Solutions. In Case the Set of Points on Front 1 Are Deleted, then
Front 2 Becomes the (Near) Pareto Optimal Set of the Remaining
Solutions. The Same Rule Is Used Iteratively for the Rest of the
Fronts up to the Last Front j

» Front j

Expected Overtime

» Front 2

» Front 1

Expected Patient Waitina Time
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see how many were needed to obtain a satisfactory
trade-off between computation time and half width of
the generated confidence intervals. Based on these
experiments, the results below include 20 simulation
replications in the evaluation of each solution.

6.1. Analysis of Simple Heuristics

We analyzed combinations of four different sequenc-
ing heuristics (LPT, SPT, VAR, COV) with various
hedging levels. Expected patient waiting time and
expected surgical suite overtimes are estimated for
each sequencing and scheduling heuristic combina-
tion. Figure 4 illustrates our results for 12 heuristics
and 50%, 65%, 75% indicate the hedging (percentile)
levels. The result for the baseline schedule as well as
the result for a random schedule generated by ran-
domly assigning procedures to the time slots available
in the day of procedure are also plotted to serve as
reference points. We calculated 95% confidence intervals
for each of the criteria of the 12 heuristics, baseline
schedule, and the random schedule and found them
to be approximately 2% of the mean values.

Figure 4 provides several important insights. First,
the baseline schedule is in the dominated set. Second,
expected patient waiting time is very sensitive to the
choice of percentile used for hedging. As the percen-
tile increases the expected patient waiting time drops
while the expected surgical suite overtime increases.
Also, the trade-off between improvements in expected
patient waiting time and expected overtime depends
on the specific sequencing heuristic used to create an
ordered list of surgeries. Third, among the four se-
quencing heuristics, SPT performs the best as it is

Figure4 Expected Values (in Terms of Minutes) for the Resulting Criteria
for All Heuristics, a Random Schedule, and the Baseline Schedule.
Note that Longest Processing Time (LPT) Sequences According to
Increasing Mean, Shortest Processing Time (SPT) Decreasing
Mean, VAR Increasing Variance, and COV Increasing Coefficient of
Variation of Procedure Durations. Results Are Clustered According
to the Hedging Level Used for Appointment Time Setting
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always on the efficient frontier, while VAR and COV
appear in the vicinity of the frontier. It is intuitive that
there is not a considerable difference between the
performance measure values from the SPT and VAR
rules due to the fact that there is a positive correlation
between mean and standard deviations of the proce-
dure durations within a surgical group (see Table 1).
Because of the correlation, the two procedure lists se-
quenced according to increasing mean and increasing
variance are generally similar, and hence would yield
indifferent criteria values. The correlation between
these parameters is the reason for considering coeffi-
cient of variation as one of the reference for the
sequencing heuristics; however, the COV heuristic is
outperformed by SPT. Finally, the LPT heuristic gen-
erally performs poorly and is dominated by the other
heuristics. This result supports the findings of Dexter
and Marcon (2006) who found that LCF, while being
the most popular rule used in practice, is one of the
worst rules they considered with regard to the criteria
of their study (see section 3 for more details). We find
using LPT for sequencing, and 50th percentile for ap-
pointment time-setting heuristic, creates a schedule
performing even worse than a random schedule. In-
tuitively, this seems to stem from the fact that LPT
schedules procedures with higher variability first
(due to the correlation between mean and standard
deviations), which negatively affects the schedule
later in the day, causing higher expected patient wait-
ing time and expected surgical suite overtime (for a
similar conclusion for a single OR case, see Denton
et al. 2007).

The most notable finding of this section is the fol-
lowing: Among the sequencing heuristics, SPT yields the
best schedules; while the best choice for a job hedging level
depends on the heuristic used for sequencing the surgeries.

6.2. Optimization-Based Improvements to
Simple Heuristics
Using the same data, we test our GA-based approach
in two different contexts. First, we apply the GA to the
daily procedure lists assuming the procedure day is
fixed (model A). Based on preliminary numerical
experiments, we chose the number of solutions in a
population to be 40, and the number of generations to
be 50. We use combinations of sequencing (SPT, LPT,
VAR, COV) and time-setting heuristics (50, 55, 60, 65,
70, 75, 80, 85th percentiles) to provide 32 different
initial solutions. The baseline schedule is also used as
one of the initial solutions. The remaining seven so-
lutions are generated by randomly assigning the
procedures to the time slots available in the surgery
schedule in the same day.

In Figure 5, we compare the GA solutions with the
only solutions located on the efficient frontier of heu-
ristics revealed in section 5.1 (see Figure 4). We observe
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Figure5 Comparison of the Genetic Algorithm (GA) Solutions (for 80, 70,
65, 60th Percentiles) with the Shortest Processing Time (SPT)
Solutions (for 75, 65 and 50th Percentiles from Left to the Right,
Respectively), the Only Solutions on the Efficient Frontier of
Heuristics. Note that the Unit Values Are in Minutes
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that the (near) Pareto optimal set of solutions for the
combination of the methods includes some GA solu-
tions and all heuristics that use SPT as the sequencing
heuristic. This indicates that the GA does not help us to
improve the efficient solutions found by simple heu-
ristics when the solution space is constrained by fixing
the day of procedures. As SPT is easy to implement in
practice, it is more advantageous for surgical suite
managers compared with the GA that requires compu-
tational resources to yield a solution.

Figure 5 also indicates the distribution of the hedg-
ing levels used for the (near) Pareto optimal set of
solutions. There are 23 efficient GA solutions plotted
on Figure 5 and of all, the majority (56%) use the
hedging level corresponding to the 65th percentile,
while 21% utilize the 70th, 13% 80th, and 8% 60th
percentiles. As it is used in the majority of the sched-
ules on the (near) Pareto optimal set, and also
provides a reasonable trade-off between expected
patient waiting time and expected surgical suite over-
time, the 65th percentile of the procedure time
distributions seems to be a proper choice as the
amount of time to allocate to procedures. On the other
hand, expected surgical suite overtime values are
found to be more than 1 hour for the other efficient
schedules revealed. This would also direct managers
toward the selection of 65th percentile. Another in-
sight that the graph yields is that schedules having the
same hedging value generally appear in regions close
to each other in criteria space. This further supports
the observation that the job hedging parameter has a
significant effect on both criteria.

The most significant finding in this section is: The
performance of SPT-based heuristics is similar to perfor-
mance of the GA when the day of the procedure is fixed.
Because it is much easier to implement in practice, SPT-
based heuristics are recommended over the GA.

Figure6 Comparison of Solution Values in Minutes for Different (Near)
Pareto Optimal Set of Solutions of Genetic Algorithm for Different
Configurations: (1) Fixed Surgical Mix, (2) Varying Surgical Mix
with 3-Day Time Window, and (3) Varying Surgical Mix with
5-Day Time Window
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6.3. Optimization of Daily Procedure Mix

To answer the third research question we defined in
section 1, we relax the requirement that daily mix be
fixed (model B). This model provides more flexibility
because the procedures are allowed to be assigned to
any day within an n-day time window. We define the
time windows as mutually exclusive windows (i.e.,
the days from 1 to n belong to one window, while the
days from [n+1] to [2n] belong to a different window),
so we shift the days of surgeries back and forth while
fixing the time window they belong to. In our exper-
iments, we tested n =3 and n = 5. In the case of n =3,
for example, if the original day of the procedure was
Wednesday of the first week, then it can be reassigned
to Monday, Tuesday, or Wednesday of the first week.
On the other hand, if the procedure day was originally
set as Friday of the first week, then it can be moved to
Thursday or Friday of the first week, or Monday of
the second week. The solution space for n =5 corre-
sponds to allowing procedures to be moved within a
given week (this is reasonable because procedures
scheduled in the OPC are elective). Furthermore, it is
consistent with some surgery scheduling practices
where scheduling is executed in two steps; first by
setting the week of surgery, and afterwards setting the
specific times (Gupta 2007).

Figure 6 compares the (near) Pareto optimal sets of
GA solutions for n =1, 3, 5. Figure 6 illustrates that
reorganizing procedures among days (e.g., n =3 or 5)
considerably improves the two criteria. The main rea-
son for the realization of such an improvement is that
the variation of the surgical load among days is better
balanced in schedules obtained this way. Besides, the
shares of procedure groups using an OR in a given
day are now better set due to the flexibility of mod-
ifying procedure days. When the procedure mixes
among days can be varied, some surgeries that would
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otherwise have induced overtime can then be as-
signed to another day where the OR utilization is
lower. In Figure 6, we observe similarity between the
(near) Pareto optimal sets for n =3 and n =5, i.e,, two
sets are very close to each other. This indicates the 3-
day time window is sufficient to balance the surgical
load among days.

The most essential finding to be re-emphasized is
that controlling surgical mixes among days may help
achieve significant improvements in expected patient wait-
ing time and expected surgical suite overtime; a time
window of 3 days appears to be sufficient to achieve the
benefits.

7. Conclusions

OPCs require the coordination of many activities, in-
cluding patient check-in, intake, surgical procedure,
and recovery. In this article, we first develop easy-to-
implement heuristics for scheduling of an OPC at a
large medical center. We then compare the perfor-
mance of these heuristics with a GA-based approach.
We also illustrate the impact of varying the surgical
mix among days using the GA. Following are the
most significant general insights of our study:

e Simple heuristics can improve actual schedules
used in practice for an OPC. Job hedging may be
used to decrease patient waiting times at the ex-
pense of increasing surgical suite overtime.
Furthermore, the level of trade-off between the
patient waiting time and surgical suite overtime
due to the increase in job hedging level varies as
the heuristic used for sequencing the surgeries
changes. Among the sequencing heuristics, LPT
causes high expected overtime, and should be
avoided, while SPT (first) performs quite well.

¢ Expending greater computational effort with a more
sophisticated GA-based method under a restricted
environment (no control over daily procedure mix)
does not achieve substantial additional improve-
ments. Owing to its easy-to-implement nature SPT
should be favored over the GA.

e Controlling daily procedure mix may achieve
substantial improvements in performance,
though there are diminishing returns as the time
window for moving surgeries is increased.

In this paper, we evaluate the schedules using a
comprehensive model of an OPC and analyze the pa-
tient flow through the units (i.e., intake rooms, ORs,
recovery rooms). However, as ORs are the major bottle-
necks in our model, we consider only the durations of
the surgical procedures and do not explicitly consider
the other resources (e.g., mobile and specialized equip-
ment, materials, nurses, nurse anesthetists, and other

human resources) while designing the surgery sched-
ules. As a future research direction, we are planning to
examine the potential benefits of more complicated
scheduling techniques considering the impact of other
resource types into the schedule efficiency.
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Appendix A

The following provides additional information about
our bi-criteria GA. In the first section, we provide
pseudocode for the GA and in the second we provide
specific details about various aspects of the GA.

A.1. Pseudocode

A.1.1. Parameters.
t = generation counter

i = chromosome index
G = number of generations
N =number of chromosomes in a generation
P; = parent population in generation ¢
O; = offspring population in generation ¢
C; = pool of chromosomes in generation ¢
F; = front value for chromosome i

CD; = crowding distance value of chromosome i

Step 0: Set generation number ¢ as 0. Form initial
population Py having size N and set it as the current
pool of chromosomes (Co).

Step 1: Simulate chromosomes (surgery schedules).
Take the two criteria values (expected patient waiting
time and expected surgical suite overtime) as the re-
turned parameter values. If t =0, then skip step 2.

Step 2: Combine parent (P;) and offspring (O,) pop-
ulation to update the current pool (C,).

Step 3: Rank each chromosome i in C; based on the
front they belong to (F;) and their crowding distance
(CD).

Step 4: Eliminate the poorest N chromosomes of C;
and hence leave the best N chromosomes of the cur-
rent pool.

Step 5: Use binary selection tournament operator to
select two candidate chromosomes from the current
pool to generate a chromosome for the next genera-
tion.

Step 6: Apply crossover using the two chromosomes
to generate offspring. If the GA model is A, then there
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is no need for resetting the day, skip step 7. Otherwise,
go to step 7.

Step 7: Set the days of procedures by considering
daily capacity thresholds set for each OR.

Step 8: Set the patient appointment times that are
the key attributes of genes in the chromosomes using
the time-setting heuristic type associated with the
chromosome.

Step 9: Apply mutation by changing the orders of
two random procedures selected from the surgery
schedules. Increment generation number ¢ and set the
resulting population as O; (offspring population). If
t>1, O;,_1 becomes P,. Otherwise (at the first itera-
tion), Py is set as P;.

Step 10: Check if the limit on the number of gen-
erations is reached (stopping criterion). If yes (t > G),
terminate. Otherwise (f<G), go to step 1.

A.2. GA Operators

A.2.1. Selection. We sort chromosomes in the pool to
have a lexicographical order of chromosomes accord-
ing to the front value (has higher importance) and
crowding distance value (see below). Then we eliminate
the last N chromosomes in the sorted list to leave the
N best chromosomes in the pool. We use the binary
selection tournament method (Brindle 1981) to select
mating chromosomes from the pool. The binary selec-
tion tournament operator works as follows: two
chromosomes are selected randomly and compared
with each other with respect to the front values. The
crowding distance value is used as a tie breaker of the
competition. The one that wins the tournament at-
tends the crossover operation as one of the mating
chromosomes. The other mating chromosome is also
selected by applying the operator once again.

A.2.2. Crowding Distance. Chromosomes are ranked
based on the front they appear on as well as a crowding
distance operator (Deb et al. 2000). The crowding dis-
tance operator encourages diversity in the solutions
with respect to the (near) Pareto optimal set to avoid
generating a large number of solutions with similar
expected patient waiting time and expected surgical
suite overtime values.

A.2.3. Crossover. After selecting mating chromosomes,
uniform crossover (Syswerda 1989) is applied to generate
N offspring for the next generation. Crossover deter-
mines the order of procedures in a schedule as well as
the job hedging level that would be used later in order
to set appointment times. We apply the crossover op-
eration independently for each procedure list of n-
days to sequence procedures and then we combine
the resulting independent partial sequences to have a
full sequence. An illustration of the uniform crossover
for determining the order of the procedures in the
procedure list in the offspring can be seen in Figure 7.

Figure7 Two Chromosomes (X and Y) Are Selected for Uniform Crossover
to Determine the Sequence of a Surgical Procedure List. The First
Procedure, s, Has Already Been Moved from Y to the Offspring in
the Previous lteration. Procedure s Was then Deleted from Both
Chromosomes. At this Iteration, Chromosome X Is Selected for
Determining the Next Surgical Procedure of the Offspring. Now, it
Is Time to Insert the Second Procedure, i, which Is on the Top of
the Remaining Procedure String of Chromosome X

1 Procedure i 1 Procedure s

1 [Procedure s

2 Procedure j 2 Procedure p 2 Procedure i

(n-1) [Procedure-s| (n-1) Procedure r
n Procedure q n Procedure f
| Chromosome X | | Chromosome Y | | Offspring |

A.2.4. Schedule Construction Using Heuristics. For
model A, we directly apply the patient appointment
time-setting method as the procedure day is kept
fixed there. For model B, where we examine the
change in a daily procedure mix, we first set the days
of the procedures for each list independently. Follow-
ing this, we set the appointment time of each patient
for each OR and day combination. Day-setting
method for model B is described first.

A.2.5. Procedure Day Setting. For each of n-days, we
determine the surgical procedure list in each OR in-
dependently. We assign procedures iteratively to daily
lists. To control the number of procedures in a daily
list, we set a daily capacity that the OR can serve each
day and therefore set a capacity threshold to prevent
the method from leading to extreme values of over-
time. We set the average daily workload for a surgical
department during the study period as the threshold
(see Table 3). These thresholds serve as an overtime
control parameter in the study, i.e., the estimated du-
ration of the procedures (the sum of the mean
durations) is not permitted to exceed this threshold.

A.2.6. Mutation. Following the sequencing and
appointment time-setting methods, we use a swap
mutation operator by changing the orders of two ran-
domly chosen procedures in the surgery schedules.
The purpose of applying mutation is to avoid local
minima or help sustain the evolution process by fa-
voring further diversity among chromosomes.

Table3 Daily Surgical Load Capacity Allocated for an Operating Room (OR)
in Terms of Minutes for Different Departments Are Listed

Surgical department Capacity (in minutes)

Oral maxillofacial procedure 480
Pain medicine 420
Ophthalmology 350
Urology 330
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