Deep learning based fall detection using smartwatches for healthcare applications


Şengül G., Karakaya K. M., Misra S., Abayomi-Alli O. O., Damaševičius R.

Biomedical Signal Processing and Control, cilt.71, 2022 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 71
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.bspc.2021.103242
  • Dergi Adı: Biomedical Signal Processing and Control
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, EMBASE, INSPEC
  • Anahtar Kelimeler: Activity recognition, Digital health, Fall detection, Smartwatch
  • TED Üniversitesi Adresli: Evet

Özet

We implement a smart watch-based system to predict fall detection. We differentiate fall detection from four common daily activities: sitting, squatting, running, and walking. Moreover, we separate falling into falling from a chair and falling from a standing position. We develop a mobile application that collects the acceleration and gyroscope sensor data and transfers them to the cloud. In the cloud, we implement a deep learning algorithm to classify the activity according to the given classes. To increase the number of data samples available for training, we use the Bica cubic Hermite interpolation, which allows us to improve the accuracy of the neural network. The 38 statistical data features were calculated using the rolling update approach and used as input to the classifier. For activity classification, we have adopted the bi-directional long short-term memory (BiLSTM) neural network. The results demonstrate that our system can detect falling with an accuracy of 99.59% (using leave-one-activity-out cross-validation) and 97.35% (using leave-one-subject-out cross-validation) considering all activities. When considering only binary classification (falling vs. all other activities), perfect accuracy is achieved.