Mining of remote sensing image archives using spatial relationship histograms


Creative Commons License

Kalaycilar F., Gençtav A., Zamalieva D., Aksoy S.

2008 IEEE International Geoscience and Remote Sensing Symposium - Proceedings, Boston, MA, Amerika Birleşik Devletleri, 6 - 11 Temmuz 2008, cilt.3, (Tam Metin Bildiri) identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası: 3
  • Doi Numarası: 10.1109/igarss.2008.4779416
  • Basıldığı Şehir: Boston, MA
  • Basıldığı Ülke: Amerika Birleşik Devletleri
  • Anahtar Kelimeler: Feature selection, Image retrieval, Spatial relationships
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • TED Üniversitesi Adresli: Hayır

Özet

We describe a new image representation using spatial relationship histograms that extend our earlier work on modeling image content using attributed relational graphs. These histograms are constructed by classifying the regions in an image, computing the topological and distance-based spatial relationships between these regions, and counting the number of times different groups of regions are observed in the image. We also describe a selection algorithm that produces very compact representations by identifying the distinguishing region groups that are frequently found in a particular class of scenes but rarely exist in others. Experiments using Ikonos scenes illustrate the effectiveness of the proposed representation in retrieval of images containing complex types of scenes such as dense and sparse urban areas. © 2008 IEEE.