Simulation of impact induced damage process in a carbon/epoxy composite beam


Bozkurt M. O., ÇÖKER D., Parnas K. L.

7th Asian/Australian Rotorcraft Forum, ARF 2018, Seogwipo City, Jeju Island, Güney Kore, 30 Ekim - 01 Kasım 2018 identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Basıldığı Şehir: Seogwipo City, Jeju Island
  • Basıldığı Ülke: Güney Kore
  • Anahtar Kelimeler: Composite failure, Delamination, Finite element analysis, Low-velocity impact, Polymer-matrix composites
  • TED Üniversitesi Adresli: Evet

Özet

© 2019 The Vertical Flight Society. All rights reserved.This paper presents numerical investigation of low-velocity impact (LVI) damage process in a unidirectional [0/90]s carbon/epoxy composite beam. Numerical simulations based on finite element method are conducted in ABAQUS/Explicit. A 3D model representing LVI experiments is generated. Matrix and fiber damage mechanisms are simulated by implementation of continuum damage mechanics based composite damage model with Hashin failure initiation criteria via a user-written VUMAT subroutine. Cohesive interfaces are modeled by insertion of cohesive elements between clustered plies. Bilinear traction separation law is introduced to cohesive elements for simulation of delamination damage. The results show that damage forms as a shear crack along the middle clustered 90° plies and the damage formation sequence is in good agreement with experimental results presented in the related literature. Besides, the existence of 3D effects on damage scheme in line impact event is clearly presented.