On the asymptotic behaviour of the number of Beauville and non-Beauville p-groups


Creative Commons License

Fernandez-Alcober G. A., Gül Erdem Ş., Vannacci M.

PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, cilt.120, sa.2, ss.220-241, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 120 Sayı: 2
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1112/plms.12295
  • Dergi Adı: PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, MathSciNet, zbMATH, DIALNET
  • Sayfa Sayıları: ss.220-241
  • Anahtar Kelimeler: 20D15 (primary), 14J29, 20F69 (secondary), SURFACES
  • TED Üniversitesi Adresli: Evet

Özet

We find asymptotic lower bounds for the numbers of both Beauville and non-Beauville 2-generator finite p-groups of a fixed order, which turn out to coincide with the best known asymptotic lower bound for the total number of 2-generator finite p-groups of the same order. This shows that both Beauville and non-Beauville groups are abundant within the family of finite p-groups.