Environmental Assessment of Calcium Sulfoaluminate Cement: A Monte Carlo Simulation in an Industrial Symbiosis Framework


Tanguler-Bayramtan M., Aktaş C. B., YAMAN İ. Ö.

Buildings, cilt.14, sa.11, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 11
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/buildings14113673
  • Dergi Adı: Buildings
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: by-product, calcium sulfoaluminate, CO2 emissions, CSA cement, energy consumption, industrial symbiosis (IS), Monte Carlo, waste
  • TED Üniversitesi Adresli: Evet

Özet

Calcium sulfoaluminate (CSA) cement is recognized as an environmentally friendly alternative to Portland cement (PC) due to its lower carbon footprint and energy requirements. However, traditional CSA cement production faces significant obstacles, including the high cost and regionally constrained availability of bauxite, a key raw material. Utilizing alternative materials in the production process offers a viable approach to address these limitations. This study evaluated the environmental performance of three laboratory-synthesized CSA cements using alternative raw materials sourced through an industrial symbiosis framework. A comparative assessment with PC was conducted, focusing on energy consumption and CO2 emissions as key environmental performance indicators. The environmental impact of the CSA cements was analyzed using Monte Carlo simulations, a robust statistical approach based on data for the constituent raw materials. This method provides a practical alternative to a full life cycle assessment (LCA) when comprehensive data are not available. The results demonstrate that the CSA cements have significantly lower environmental impacts compared to PC, achieving energy savings of 13–16% and CO2 emission reductions of 35–48%. These results emphasize the potential of industrial symbiosis to enable more sustainable CSA cement production while addressing raw material constraints. In addition, this approach highlights the wider applicability of industrial symbiosis frameworks in the construction industry, contributing to a zero-waste future and supporting global climate goals.