Grigorchuk-Gupta-Sidki groups as a source for Beauville surfaces


Creative Commons License

Gül Erdem Ş., Uria-Albizuri J.

GROUPS GEOMETRY AND DYNAMICS, cilt.14, sa.2, ss.689-704, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 2
  • Basım Tarihi: 2020
  • Doi Numarası: 10.4171/ggd/559
  • Dergi Adı: GROUPS GEOMETRY AND DYNAMICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, MathSciNet, zbMATH
  • Sayfa Sayıları: ss.689-704
  • Anahtar Kelimeler: Finite p-groups, Beauville p-groups, Beauville surfaces, automorphisms of trees, GGS-groups
  • TED Üniversitesi Adresli: Evet

Özet

If G is a Grigorchuk-Gupta-Sidki group defined over a p-adic tree, where p is an odd prime, we study the existence of Beauville surfaces associated to the quotients of G by its level stabilizers st(G)((n)). We prove that if G is periodic then the quotients G/ st(G)(n) are Beauville groups for every n >= 2 if p >= and n 3 if p = 3. In this case, we further show that all but finitely many quotients of G are Beauville groups. On the other hand, if G is non-periodic, then none of the quotients G= st(G)(n) are Beauville groups.