INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, cilt.41, sa.17, ss.4153-4169, 2003 (SCI-Expanded)
This paper addresses job shop scheduling with sequence dependent family set-ups. Based on a simple, single-machine dynamic scheduling problem, state dependent scheduling rules for the single machine problem are developed and tested using Markov Decision Processes. Then, a generalized scheduling policy for the job shop problem is established based on a characterization of the optimal policy. The policy is combined with a 'forecasting' mechanism to utilize global shop floor information for local dispatching decisions. Computational results show that performance is significantly better than that of existing alternative policies.