Turkish Journal of Mathematics, vol.43, no.6, pp.2731-2740, 2019 (SCI-Expanded)
In the present article, we expose various properties of unbounded absolutely weak Dunford-Pettis and unbounded absolutely weak compact operators on a Banach lattice E. In addition to their topological and lattice properties, we investigate relationships between M-weakly compact operators, L-weakly compact operators, and order weakly compact operators with unbounded absolutely weak Dunford-Pettis operators. We show that the square of any positive uaw-Dunford-Pettis (M-weakly compact) operator on an order continuous Banach lattice is compact. Many examples are given to illustrate the essential conditions.