Beauville structures in p-central quotients


Creative Commons License

Gül Erdem Ş.

JOURNAL OF GROUP THEORY, cilt.20, sa.2, ss.257-267, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 20 Sayı: 2
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1515/jgth-2016-0031
  • Dergi Adı: JOURNAL OF GROUP THEORY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.257-267
  • TED Üniversitesi Adresli: Hayır

Özet

We prove a conjecture of Boston that if p >= 5, all p-central quotients of the free group on two generators and of the free product of two cyclic groups of order p are Beauville groups. In the case of the free product, we also determine Beauville structures in p-central quotients when p = 3. As a consequence, we give an infinite family of Beauville 3-groups, which is different from the ones that were known up to date.