Spatiotemporal no-reference video quality assessment model on distortions based on encoding Kodlama tabanli bozulmalar üzerine uzam- zamansal referanssiz video kalite degerlendirme modeli

Zerman E., AKAR G., Konuk B., Nur Yılmaz G.

2013 21st Signal Processing and Communications Applications Conference, SIU 2013, Haspolat, Turkey, 24 - 26 April 2013 identifier

  • Publication Type: Conference Paper / Full Text
  • Doi Number: 10.1109/siu.2013.6531235
  • City: Haspolat
  • Country: Turkey
  • Keywords: No-reference metric, Quality of experience (QoE), Spatiotemporal information, Video quality assessment (VQA)
  • TED University Affiliated: No


With increasing demand on video applications, the video quality estimation became an important issue of today's technological world. There are different researchers and institutions working on video quality estimation. Most of the objective Video Quality Assessment (VQA) algorithms are Full- Reference (FR) metrics, and they require the original video. Metrics which require some features extracted from reference video are called as Reduced-Reference (RR). Additionally, No- Reference (NR) metrics do not require any information about the original video. Therefore, NR metrics are much suitable for online applications such as video streaming. A novel, objective, NR video quality assessment metric is proposed in this study. The proposed algorithm is based on utilization of spatial extent of video, temporal extent of video using motion vectors and bit rate. Test results obtained using the bit streams which have distortions based on encoding from LIVE video quality database. Results indicate the proposed metric is an accurate and robust algorithm. © 2013 IEEE.