APPLIED PHYSICS LETTERS, vol.94, no.7, 2009 (SCI-Expanded)
We have observed liquid-solid phase-change oscillations in 2-5.5 mu m long silicon wires biased through a load resistor. Molten silicon resistivity is approximately 30 times lower than that of the room temperature solid-state resistivity of the highly doped nanocrystalline-silicon thin film used to fabricate the wires. Wires typically melt with 15-20 V electrical stresses, draining the parasitic capacitance introduced by the experimental setup within 1 mu s. The power dissipated in the wire is not sufficient to keep it in molten state after the discharge, leading to repeated melting and resolidification of the wires with 1 MHz, 2-20 mA current oscillations.