Critical decision making for rehabilitation of hydroelectric power plants

Celebioglu K., Ayli E., Ulucak O., Aradağ Çelebioğlu S., Westerman J.

Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol.45, no.4, pp.10073-10106, 2023 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 45 Issue: 4
  • Publication Date: 2023
  • Doi Number: 10.1080/15567036.2023.2241409
  • Journal Name: Energy Sources, Part A: Recovery, Utilization and Environmental Effects
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, CAB Abstracts, Communication Abstracts, Compendex, Computer & Applied Sciences, Environment Index, Greenfile, INSPEC, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Page Numbers: pp.10073-10106
  • Keywords: CFD, Francis turbine, performance estimation, Reverse engineering, transient simulation
  • TED University Affiliated: Yes


Due to their diminishing performance, reliability, and maintenance requirements, there has been a rise in the demand for the restoration and renovation of old hydroelectric power facilities in recent decades. Prior to initiating a rehabilitation program, it is crucial to establish a comprehensive understanding of the power plant’s current state. Failure to do so may result in unnecessary expenses with minimal or no improvements. This article presents a systematic rehabilitation methodology specifically tailored for Francis turbines, encompassing a methodological approach for condition assessment, performance testing, and evaluation of rehabilitation potential using site measurements and CFD analysis, and a comprehensive decision-making process. To evaluate the off-design performance of the turbines, a series of simulations are conducted for 40 different flow rate and head combinations, generating a hill chart for comprehensive evaluation. Various parameters that significantly impact the critical decision-making process are thoroughly investigated. The validity of the reverse engineering-based CFD methodology is verified, demonstrating a minor difference of 0.41% and 0.40% in efficiency and power, respectively, between the RE runner and actual runner CFD results. The optimal efficiency point is determined at a flow rate of 35.035 m3/s, achieving an efficiency of 94.07%, while the design point exhibits an efficiency of 93.27% with a flow rate of 38.6 m3/s. Cavitation is observed in the turbine runner, occupying 27% of the blade suction area at 110% loading. The developed rehabilitation methodology equips decision-makers with essential information to prioritize key issues and determine whether a full-scale or component-based rehabilitation program is necessary. By following this systematic approach, hydroelectric power plants can efficiently address the challenges associated with aging Francis turbines and optimize their rehabilitation efforts.